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ABSTRACT

Acclimatization is a process that occurs in individual cells to a drastic change in micro and macro
environments. When an organism is subjected to a new environment or a change in its normal
growing conditions, the cellular mechanisms initiate a warning sign and over a period of time or
over generations the acquired, modified traits are being communicated and fixed as a new trait. If
there is lack of equilibrium within the cell due to over expression of a single gene or network of
associated genes either manmade or due to mutations, the organism or plant tries to fix it by
initiating gene regulatory mechanisms. According to our neutral theory of gene expression, always
a cell tries to maintain its pH by modifying its cytosol through altered gene expression. In the
presentinvestigation, 198 AtMYB genes were analyzed and found to play an intrinsic photosystem
linked network of 38 nodes where MYB being regulated by a set of 48 miRNAs. Members of the
network have evidence-based link to energy related mechanisms. Altering gene expression to an
extent where, the cell may not be able to fix it or a trait, which requires excessive energy loss escorts
the organism's gene regulation by breakdown of the introduced sequence over few generations.
Events with constitutive overexpression may suffer poor performance over the years based on gene
network prevailing in the crop of interest. Hence, network rewiring with minimal energy expenses
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expression of genes
INTRODUCTION

Non-coding RNAs (ncRNAs) are potentially under explored
part of biological gene regulation. Of the total RNA pool,
many of them do not code a functional protein despite being
transcribed but with important duties assigned other than
coding. Splicing machinery decides in many instances on
which to produce a functional protein. Though splice variants
explained a few but consisted of translation machinery and its
regulation though many left unexplained are to be explored.
Many abundant structural and regulatory RNAs were
distinguished and a few ncRNAs were confirmed of its
involvement in imprinting and other cellular processes were
identified by genetic studies. Further, small regulatory RNAs
such as microRNAs were identified to regulate translation of
mRNA to refine key genetic pathways (Kung et al., 2013).
MYBs are a superfamily of transcription factors that mask
regulatory roles in developmental processes and defense
responses in plants. These are vital factors in regulatory
networks controlling development, metabolism and
responses to biotic and abiotic stresses (Dubos et al., 2010).
MYB-type transcription factors (TFs) play fundamental roles
in plant growth, development and respond to environmental
stresses. There are 198 AtMYB genes identified in Arabidopsis
genome sequence, among them, 126 are R2R3-MYB, 5 are
R1R2R3-MYB, 64 are MYB-related, and 3 atypical MYB genes
arereported. Most of MYB genes that are involved in response
to diverse abiotic stress belonged to the R2R3-type group
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(Xiongetal., 2014).

MYB proteins are characterized by a highly-conserved DNA-
binding domain: the MYB domain. Most MYB proteins
function as transcription factors with varying numbers of
MYB domain repeats conferring their ability to bind DNA. In
plants MYB proteins and have been implicated in ABA
response and operate with other transcription factors.
Members of this family function in a diversity of plant-specific
processes, as evidenced by their extensive functional
characterization in Arabidopsis. In plants, for the first time
MYB gene identified was C1 from Zea mays (Paz-Ares et al.,
1987). The structure of MYB protein subfamily is different in
plants containing mainly MYB protein subfamily
characterized by the R2R3-type MYB domain. There are
various functions of MYB family in plants that indicate their
importance in the control of plant specific processes.
Biological functions like phenylpropanoid metabolism biotic
and abiotic stress (Segarra et al., 2009; Lippold et al., 2009), cell
shape regulated by AmMIXTA (Noda et al, 1994),
differentiation (Oppenheimer et al., 1991; Kang et al., 2009),
hormone responses i.e. AtMYB2 (Urao et al.,, 1993), GaMYB
and CpMYB (Gubler et al., 1995), formation of B-type cyclin
(Ito et al., 2001) or during plant defense reactions by NtMYB1
are variedly controlled by the members of the MYB gene
family. R2R3-MYB genes have been the extensively studied
genes of MYB family. MybIR is involved in regulation of
circadian clock and telomeric DNA-binding protein (Schaffer
etal., 1998).
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MATERIALS AND METHODS

Sequence retrieval for bioinformatic analyses

About 198 AtMYB sequences of A. thaliana were retrieved
from The Arabidopsis Information System (https://
www.arabidopsis.org/). A set of mature miRNAs of A.
thaliana downloaded from miRBase (Release 21,
http://www.mirbase.org/) consists of a total number of 427
known mature miRNAs.

Target prediction

The MYB sequences of A. thaliana were used as query against
the miRBase A. thaliana mature miRNAs sequences using
psRNATarget web server with the following parameters: (1)
maximum expectation value 3; (2) length for complemen-
tarities scoring value 20; (3) Range of central mismatch
leading to translational inhibition 9-11 nucleotide. Server
psRNATarget provides reverse complementary matching
between miRNAs and its target transcript and finds the target
site accessibility by calculating unpaired energy (UPE)
necessary for opening the secondary structure around the
miRNA target site.

Fig.1: MYB gene network in Arabidopsis thaliana
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Gene network prediction
Gene network was predicted based on co-expression datasets
mined from available online resources.

RESULTS AND DISCUSSION

In the present investigation, 198 AtMYB genes were analysed
and found to play an intrinsic photosystem linked network of
38 nodes where MYB being regulated by a set of 48 miRNAs
(table 1). Members of the network have evidence-based link to
energy related mechanisms. Forty-eight potential miRNAs
targeting AtMYB were identified in A.thaliana using
psRNATarget server with at least one target mRNA identified
for most of the A. thaliana miRNA families. These identified
miRNAs targets a variety of gene families with diverse
biological and physiological functions.

MYB transcription factors genes network

The predicted evidence-based network of AtMYB genes is
depicted in figure 1. The non-MYB members of the network
are explained here.
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BTB and TAZ domain

BT1 to BT5proteins have a typical domain structure that seen
in plants. BT1 is a very short-lived protein constantly targeted
for degradation by 26S proteasomes. Gene structure
expression pattern and sequence analysis stipulate that BT1
and BT2 are closely concomitant. Molecular and phenotypic
analyses of plants unveil notable redundancy amongst the
BTB members. BTB plays a predominant role in development
of male and female gametophyte (Robert ef al., 2009). BT3 and
BT1 gene overtake BT2 gene functionally.

TT8

The role of TRANSPARENT TESTA 8 (TT8) is in the directive
of flavonoid biosynthesis and formation of seed coat color.
The effect of TT8 on seed Flavonoid Acid (FA) biosynthesis
remains unheard. TT8 acted maternally to outturn seed FA
biosynthesis and inhibited seed FA accumulation by
downregulating a group of genes, which are either critical to
embryonic development or FA biosynthesis. It has been
observed that TT8 mutation reduced protein deposition in
seeds during maturation. The main role of TT8 is to regulate
FAbiosynthesisin seeds (Baudry et al., 2006).

cor1

CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1),
which is initially known as central repressor of seedling photo
morphogenesis is known to be involved in the regulation of
light input to the biological clock, modulating the circadian
rhythm and flowering of plant. COP1 encompasses a RING-
finger E3 ubiquitin ligase and works with SUPPRESSOR of
phyA-105 (SPA) proteins to suppress photoperiodic
flowering by synchronizing proteasome-mediated
degradation of CONSTANS (CO), which is a central regulator
of photoperiodic flowering. COP1 also indirectly modulate
CO expression via the degradation of GIGANTEA (GI). It
mainly helps in the regulation of photoperiodic flowering
(Baueret al., 2004).

LAF1

LAF 1 transcription factor intricates photo morphogenesis in
the presence of light by taking part in transmission of
phytochrome-A signals to downstream responses. It probably
plays role in activating expression of light-induced genes
whereas in darkness, its degradation prevents the activation
of light-induced genes (Jiao et al., 2007).

HFR1

HFR 1 encodes a light directed, nuclear bHLH protein
involved in phytochrome signaling. HFR 1 is said to interact
with COPI, it co-localizes the nuclear specks and is
ubiquitinylated by COP1. Mutants exhibit a long-hypocotyl
phenotype only under far-red light but not under red light
and are defective in other phytochrome A-related responses.

AT4G27280

These are the Calcium binding EF hand family proteins,
which helps in calcium binding. They are also involved in
response to karrikin. These proteins expressed in 23 diverse
plant structures and co-localise in 13 growth stages (Walley et
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al., 2007).

NPH4

Auxin response factors (ARFs) are transcriptional factors that
bind specifically to the DNA sequence 5-TGTCTC-3' that
exists in auxin-responsive promoter elements (AuxREs). It
acts as a transcriptional activator of several tropic stimulus-
induced (TSI) genes. These are involved in ethylene responses
and regulate lateral root formation. It also mediates embryo
axis formation and vascular tissues differentiation (Labusch et
al., 2013).

AT3G26560

An ATP dependent RNA helicase, which functions in
changing expression of genes in a wide range of pathways
associated with elongation growth and stress responses.
Phytochrome family of photoreceptors (Devlin ef al., 2013)
perceives photon quality.

DISCUSSION

Earlier reports explained upregulated MYB factors in various
abiotic stress conditions (table 2). R2R3-type MYB
transcription factor are primarily responsible for regulating
drought stress response by integrating ABA and auxin signals
(Seo et al, 2009). OsMYB3R-2 overexpression showed
increased tolerance to cold, drought, and salt stress. MYB
transgenic plants are reported to be more tolerant to abscisic
acid (AA) or NaCl stress. AtMYB41 transcription factor when
overexpressed was controlling cell expansion, cuticle
deposition and leaf surface permeability in response to abiotic
stress (Cominelli ef al., 2008). Some proteins like dehydration
responsive element binding protein 2A, COR15a and RCL2A
have been upregulated in the presence of OsMYB3R.
Transgenic overexpression patterns were observed when
compared to wild type of Arabidopsis (Dai ef al., 2007). MYB
transcription factors were involved in drought response,
stomatal movement and regulation of flower development
(Ambawatetal., 2013). Overexpression of AtMYB44 conferred
abiotic stress tolerance through enhanced stomatal closure in
transgenic Arabidopsis (Jung et al., 2008).

After thorough investigation of the network, it has been
observed that MYB overexpression under various abiotic
stress conditions is a common phenomenon at mRNA level
and it may not be stable functional protein level due to the
presence of regulatory elements. MYB overexpression under
stress may not necessarily end up with stable transgenic line
overtime as the network is indicating major complex of
ncRNAs and their regulatory action.

ncRNAs Biosynthesis

These non-coding transcripts are always capped and
polyadenylated and assumed not to have any biological
function. LncRNAs are RN As larger than 200 bp, which may
or may not have enough coding potential. But IncRNAs are
distinguishable from small regulatory RNAs such as miRNAs
or piRNAs by its sequence length and structure. LncRNAs are
transcribed by RNA polymerase II or III, and additionally, by
polymerase IV/V in plants (Dinger ef al., 2009). LncRNAs are
classified primarily based on four major features, namely,
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genomic location, functions exerted on DNA or RNA, functioning
mechanisms, and targeting mechanisms (Kim ef al., 2012). Typically,

defined snRNAs and pri-miRs are in fact greater than 200 nucleotides (Li et S |68 E|E|E|E|E|E|E| &
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regulation pattern, it can also produce functional RNA.

Breakdown of introduced gene expression

Silencing of introduced genes are also the function of miRs and IncRNAs; in
many instances it needs case by case or gene by gene approach for detailed
explorations. Functional analyses of IncRNAs have shown that they are
potent cis- and trans-regulators of gene transcription, and act as scaffolds
for chromatin-modifying complexes. As potent regulatory components
involved in gene regulation from various aspects, IncRNAs can exert their
effects during tissue development and in response to external stimuli (Ma et
al., 2013).

Plant IncRNAs can act as precursors of miRNAs and other sRNAs, they
either act directly or as processed to a shorter ncRNA for gene regulation.
Under no situation, a cell favors the accumulation of a foreign protein or a
gene product. The plant cell will be working towards a balance by feedback
regulation which may either directly or indirectly affect their pH balance
and osmotic potential (Yasin and Magadum, 2016a; Yasin and Magadum,
2016b). Some IncRNAs are primary transcripts of small regulatory RNAs
such as miRNAs and siRNAs. Plant IncRNAs also act as miRNA target
mimics (Mishra ef al., 2016). Target mimicry that emerged as a unique
mechanism for regulating mRNA functions. Interactions between miRNAs
and their authentic targets are blocked by the binding of decoy RNAs or
ceRNAs to miRNAs via partial sequence complementarities during target
mimicry (Liu et al., 2015).

The various regulatory properties of IncRNAs in plants include the
LDMAR IncRNA affects male fertility in rice, it functions to regulate PSMS
(photoperiod-sensitive male sterility) and helps in providing a meaningful
tool for generating hybrid rice. LncRNAs also direct protein re-localization

AACCAUCAUCAUCAUCAACAU
UUGGAGCUCCCUUCAUUCCAA
UUGGAGCUCCCUUCAUUCCAA
UGGAGCUCCCUUCAUUCCAAG
UGGAGCUCCCUUCAUUCCAAG
UGGAGCUCCCUUCAUUCCAAG
CGGGAAGAACAGACAACGAAA
CCGGGAAGAACAGACAACGAA
AACCAUCAUCAUCAUCAUCAU
AGCAGCUCCCUUCAAACCAAA
CUGGACGAACAGACAACGAAA

Target aligned fragment
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UUUCGUUGUCUGUUCGACCUU
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in symbiosis as Enod40 which is one of the first IncRNAs that has been Zlzlzlzlzizslzigliglgl 2
identified in plants, has role in regulation of symbiotic interactions between 2 1218g8lgl8 =ik % % =
leguminou§ plants and soil bacteria. LncRNAs function as miRNA Targ(.et ARIRIRIRIRINIEIRIEIE
mimics which have been known by the resemblance of work in Arabidopsis = E %‘ %‘ % %‘ %‘ E % E E %
thaliana with that of the miRNA sponges in animal system related to :
mechanism of IncRNA function that shows that some plant IncRNAs can 5
interact with miRNAs as competitors and function as miRNA target mimics 2 &
(Mishra et al., 2016). Plant IncRNAs also help in the regulation of flowering g @ & § § § & 3‘.: E‘% @ & 3‘.:
asin A. thaliana, there are varied pathways which regulate expression of the < 2 IREEE g 22 L
floral inhibitor FLC (Flowering Locus C) to fine-tune flowering time. Z| £ |e|l&g|e|l&|le|&|&|&g| g| g
8 & gl BB E|EIE|EIE|E|EIE| &
LncRNAs have role in RADM also which is a plant specific pathway that el € |E|E|E|E|E|E|E|E|E| €
(&} [ ] (&} [ [+ [ (&} [ [ (&}

Table 1: List of identified miRNAs targeting MYB genes in Arabidopsis thaliana

include de novo DNA methylation that can be shown by many examples in
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model plants, such as maize and Arabidopsis. Genome-wide
identification of IncRNAs in plants hashelped in providing a
newwayt to identify the broadly diverse mechanisms of
IncRNAs.

Emerging techniques that identify large amounts of IncRNAs
with different characteristics have produced substantial
advances in our knowledge. In plants, we can identify
IncRNAs at the genome-wide level, test their different
expression patterns, analyze their distribution and expression
levels in different developmental stages and tissues,
investigate the action of IncRNAs on their targets, and so on.
Thus, we can improve our understanding of the genetic
mechanism of IncRNAs in plants and extend our knowledge
of the roles of IncRNAs in all species (Quan ef al., 2015).

In crop plants, some of the epigenetic mechanisms of ncRNAs

Table 2: List of MYB overexpression events reported
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have also been known and the complex network of ncRNAs
shows the potential regulatory roles of ncRNAs in plants.
Thus, ncRNAs in plants can be considered as essential
elements of gene regulation. Despite the fact that, few plant
IncRNAs have been identified and functionally investigated
till date, there are findings which explains that plant IncRNAs
have important role in regulating complex gene regulatory
networks involved in plant development and stress tolerance
(Crespi et al., 1994; Ding et al., 2012; Heo and Sung 2011;
Mishraetal., 2016).

They carry out their task by regulating the expression levels
of target genes from transcription to translation. Although
there are preceding biological importance of ncRNAs,
together with low sequence conservation, diversity of their
molecular mechanisms, and interaction with other proteins

Gene Plant Impact

Citation

OsMYB48-1 Rice Overexpression significantly improved tolerance to simulat ed Xiong et al., 2014
drought and salinity stress.
Positive role in drought and salinity tolerance by regulating
stress induced ABA synthesis.
MsMYB31 Banana Overexpression in transgenic banana plants evaluated its Tak et al., 2017
potential role in regulating biosynthesis of lignin and
polyphenols.
OsMYB3R-2 Arabidopsis Overexpression showed increased tolerance to cold, drought, Dai et al., 2007
thaliana salt stress and the seed germination of transgenic plants was
more tolerant to abscisic acid or NaCl than that of wild type.
BpIMYB46 Betula Overexpressing or silencing, it improves salt and osmotic stress Guo et al., 2016
platyphylla tolerance, higher lignin and cellulose content and lower
hemicelluloses content.
AtMYB37 Arabidopsis Overexpression confers hypersensitive phenotypes to
thaliana exogenous ABA in all the major ABA responses.
Improves plant tolerance to drought, enhances growth of
mature plants and seed productivity.
TaPIMP1 Transgenic Overexpression significally enhanced resistance to the fungal = Zhang et al., 2012
Wheat pathogen Bipolaris sorokiniana and drought stresses.
GmMYB12B2 Transgenic Overexpression induced by UV irradiation and salt treatment, Lietal., 2016
Arabidopsis but no response was detected under low temperature, drought
thaliana and ABA stresses.
It might be involved in response of plants to UV radiation and
salt stresses.
AtMYB28 or Arabidopsis Vital role in development and response to abiotic stress.
AtMYB99 Thaliana Over expression confers hypersensitivity to exogenous ABA
during seed germination, cotyledon greening and early
seedling growth.
OsMYB2 Rice Enhanced upregulation of genes encoding proline synthase
and transporters.
Plays important role in tolerance of rice to salt, cold and
dehydration stress.
AtMYB44 Transgenic Enhances stomatal closure to confer abiotic stress. Jung et al., 2008
Arabidopsis Reduced expression of genes encoding PP2Cs which have been
thaliana described as negative regulats of ABA signaling.
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are highly sequence-specific. However, ncRNA application
on crop plant engineering is a critical task at present with
available resources. As we are in genomic era and whole
genome of many crop species are available still its exploration
for crop improvement is in infancy and we are still exploring
genome wide markers for mapping and marker- aided
selection of agronomically important crop traits (Chaudhary
et al.,, 2016). The present investigation indicated that MYB
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