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Climate change is one of the burdensome factors of agricultural productivity. Adverse biotic 
and abiotic stress impacts directly on plants resulting in poor productivity and yield loss. 
Modern protocols in genome editing using CRISPR, TALENs, ZFNs and Meganucleases enable 
editing at the precise site. The versatility of genome editing tools makes its application useful in 
fields like crop improvement, gene functional analyses, pathway research, studying animal 
models, genetic analyses, epigenetic research, drug development and biofuels research etc. The 
technological advancements in genome editing are adopted in both monocots and dicots for 
crop improvement. These technologies are precise, independent of breeding limitations like 
unexplored germplasm resources and reduce breeding cycles drastically from decades to years 
to meet the global requirements. The application of genome editing in agriculture proves to be a 
potential source for developing crops with biotic and abiotic stress, improved yield with better 
nutritional qualities.
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CRISPR – The prominent tool for genome editing 

CRISPR/cas, in genome editing has emerged recently as a tool 

of choice. This method is RNA-mediated nuclease defence 

based on the adaptive bacterial and archaeal immune system 

( ). Primitive research on CRISPR was made 

by  ( ) in Escherichia coli K12. They found a new 

class of 29 nucleotides interspaced short sequence repeats of 

undefined biological importance separated by variable 32 

nucleotide spacer domains downstream of iap gene of E.coli 

K12 (Karimi et al, 2018). This initiative paved the path for 

He and Deem, 2010

Ishino et al, 1987

further research on CRISPR. The association of the CRISPR 

regions with adaptive immunity in Streptococcus thermophilus 

was elucidated and at this point, new acquiring spacers were 

accompanied by the ability to impart phage resistance in a 

Cas-dependent manner ( ). Few 

applications have been represented in fig. 1.  Enabling 

CRISPR/CAS as a genome editing tool ( ) 

which led subsequently to invent three different classes of 

CRISPR/CAS systems ( ).
Components of CRISPR

CRISPR loci contain three different elements; Direct repeat sequences; 

non-repetitive sequences (spacer); leader sequence which is absent at 

one end of the repeats. CRISPR components are shown in fig. 2. The 

upstream region of CRISPR is AT-rich leader sequence. The promoter 

to transcribe CRISPR is present in this leader sequence. Processed 

primary transcript produces crRNA with single spacer and flanking 

sequences derived from repeats. CAS acts as a regulatory element 

with the CRISPR region (Jansen et al, 2002). There are 45 documented 

Cas genes constituents of two classes grouped into the Cas1- Cas6 core 

Barrangou et al, 2007

He and Deem, 2010

Karimi et al, 2018

1 Division of Molecular Biology and Biotechnology, ICAR- Indian Agricultural Research Institute, Pusa Campus, New Delhi, India 
2 Division of Plant Physiology, ICAR- Indian Agricultural Research Institute, Pusa Campus, New Delhi, India 
3 Division of Molecular Biology and Biotechnology, ICAR-National Institute of Biotic Stress Management, Raipur, Chattishgarh India
4 ICAR Research Complex for Eastern Region, Patna, Bihar, India
5 Deptt. of Plant Breeding and Genetics, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Killikulam, Vallanadu, Tamil Nadu, India 
6 Division of Genomic Resources, ICAR-National Bureau Plant Genetic Resources, PUSA campus, New Delhi-110012 INDIA
*Corresponding Author E-mail: vanidharu@gmail.com

Received  on

Accepted

Published  online

:

:

:

05/08/2022

27/09/2022

30/09/2022

Fig. 1: Direct applications of CRISPR/Cas technology 
Fig. 2: Components of CRISPR showing the leader sequence,
            spacer and the repeat sequence
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family ( ). Cas1, metal dependant DNA-specific 

endonuclease and cas2, an essential component for spacer acquisition 

are universal and form complex with all CRISPR-associated proteins 

( ). The molecular mechanism of cas genes includes 

type I, according to Cas3 existence; type II for the existence of cas9 

gene; and type III for cas10 existence ( ). The main 

functional domain of CAS protein is RNA Recognition Motif (RRM) 

( ).   

Mechanism of action 

The CRISPR bacterial immune system consists of a three-stage 

protection mechanism: adaptation, crRNA processing and 

interference ( ). The mechanism of CRISPR 

action against the foreign DNA and destruction of invading 

DNA by CAS protein is shown in fig. 3. Adaptation adds 

repeats from foreign DNA into the CRISPR region. Upon 

invasion of foreign DNA into the bacterial cell, a repeat region 

is identified and inserted between the spacer and the first 

repeat of the CRISPR region ( ). In crRNA 

processing, the CRISPR array is transcribed into pre-crRNA. 

The associated cas1 and cas2 along with short crRNAs of 39 to 

45 nucleotides crRNA is having helicase and nuclease activity 

to degrade the invading DNA ( ). The 

interference stage involves ternary of Cas-crRNA-tracrRNA at 

the side of the 3' end of a duplex structure which binds with 

CAS protein and crRNA to recognize the protospacer 

sequence when the CAS mediated DNA interference is carried 

out by tracrRNA and CAS protein will cut the foreign DNA 

( ).

Haft et al, 2005

Karimi et al, 2018

Makarova et al, 2011

Karimi et al, 2018

Newsom et al, 2021

Abdallah et al, 2015

Haft et al, 2005

Abdallah et al, 2015

Fig. 3: CRISPR-CAS activity in bacterial cells against viral 

            DNA

The Bacterial RNA-mediated immune system (CRISPR-CAS) 

will undergo adaptation, crRNA processing, and interference 

mechanism then finally, CAS protein will cleave the foreign 

DNA. Once the CRISPR-CAS system degrades the foreign 

DNA, it will become inactive, thereby bacterial cells are 

protecting themselves from the viral attacks.

However, the CRISPR/CAS system must differentiate the 

foreign and self DNA to avoid the self-targeting and 

autoimmune effect of the existence of PAM sequence in 

invading foreign DNA for type I, II, and V systems and the 

presence of PFS (protospacer flanking sequence) in type VI 

( ). The CRISPR system is having a high 

sequence specificity because of its RNA-DNA binding nature 

compared to MegN, ZFNs, and TALENs which are dependent 

on protein–DNA binding action. Cleavage efficiency is high in 

CRISPR/Cas compared to ZFNs, and TALENs and probably 

there are no more off-target effects in CRISPR ( ). 

More intriguingly, reconstructed key components of the 

CRISPR/Cas9 system can introduce DSBs in a site-specific 

way. The fig. 4 represents the double-strand breaks and two 

possible mechanisms of homologous end joining and non-

homologous end joining mechanism suggesting the potential 

use of this programmable RNA-guided (sgRNA) 

CRISPR/Cas9 system for genome editing in organisms other 

than bacteria ( ). This possibility was soon 

demonstrated in plants ( ).

Gleditzsch et al, 2019

Xu et al, 2019

Gasiunas et al, 2012

Nekrasov et al, 2013

Fig. 4: CRISPR-CAS genome editing mechanism

The presence of Protospacer Adjacent Motif (PAM) will help 

avoid self-targeting effects, particularly for type I, II and V 

systems. After the DSB (Double Strand Break) subsequently 

NHEJ (Non-Homologous End Joining) or HDR (Homologous 

Directed Repair) can be performed for desired traits.

Genome editing system

There are four families of engineered nucleases familiarly 

being used in genome editing: Engineered Meganuclease 

(MegN), Zinc Finger Nucleases (ZFNs), Transcription 

Activator-Like Effector Nucleases (TALENs) and the 

Clustered Regularly Interspaced Short Palindromic 

Repeat/CRISPR-associated protein 9 (CRISPR/Cas9) nuclease 

systems. MegN is the genetic engineering tool used for DBS-

induced genome manipulation that is found naturally in Yeast 

(Epinat et al, 2003). In these enzymes, the binding site and 

restriction site occur within the same unit hence difficult to 

modify and comparatively less toxic than the other 

technologies (Gao et al, 2010).  It is capable of recognizing 12 to 

40 bp and cutting the DNA double-strand in a site-specific 

manner (Smith et al, 2006). Because of the limitation of the 

recognizable sites MegNs have not been used widely. ZFNs or 

TALENs are generated by fusing the DNA cleavage domain of 

the endonuclease Fok I with zinc fingers (ZFs) or with 

transcriptional activator-like effectors (TALEs) (Xu et al, 2019). 
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ZFNs were first discovered from the (TFIIIA) transcription 

factor of Xenopus laevis (African clawed toad) (Klug, 2010). 

ZFNs typically exhibit an array of 3 or 4-finger domains, 

which can recognize 18–24 bp sequences (

). ZFNs consist of a binding domain and cleaving domain 

(two half-fok I – nonspecific type II endonuclease) which can 

cleave at dimerization (Kim et al, 1996). The repairing 

mechanism of ZFNs-induced double-strand breaks is Non-

Homologous End Joining (NHEJ) or Homology Directed 

Repair (HDR) (Jia et al, 2014). ZFNs are efficiently used in 

several organisms including plants; high-frequency 

modification of tobacco gene ( ), and 

Targeted inactivation of an endogenous gene in Arabidopsis 

( ). 

TALENs (Transcription Activator-Like) Effectors are proteins 

secreted by Xanthomonas sp. bacteria via their type III 

secretion system when they infect various plant species, 

unlike ZFNs, TALENs contain single nucleotides instead of 3 

or 4 domains ( ). In TALENs host 

specificity and DNA binding actions are carried out by the 

central repeat domain which consists of 34 amino acid repeats 

that bind to one nucleotide in the target nucleotide sequence. 

An amino acid repeat of positions 12 and 13 are highly 

variable (Repeat Variable Diresidues) in the central repeat 

domain, these RVD are responsible for the recognition of 

specific nucleotides in the target nucleotide sequence 

( ). These three domains and their role in 

the recognition of specific nucleotides are shown in fig. 5. 

TALEN binds to a single nucleotide that it makes easier to 

construct TALENs as compared to ZFN, the main advantages 

of TALENs are DNA binding specificity is higher, off-target 

effects are lower, and construction of DNA-binding domains 

is easier ( ). The activity of ZFNs and 

TALENs are compared in fig. 6.

Kamburova et al, 

2017

Townsend et al, 2009

Zhang et al, 2010

Joung and Sander, 2013

Kamburova et al, 2017

Kamburova et al, 2017

horticultural crops would be highly beneficial as they are the 

key exportable goods in many countries. The first evidence of 

genome editing in a horticulture crop was performed with 

TALENs in Brassica oleracea by targeting the FRIGIDA gene 

(Sun et al, 2013).  TALENs to knock out the VInv gene (which is 

responsible for encoding a protein involved in the glucose and 

fructose breakdown from sucrose) within the commercial 

potato variety Ranger Russet, to prevent reducing sugar 

accumulation in cold temperatures, hence improving cold 

storage ( ). SbRFP1 may act as a negative 

regulator of BAM1 and StvacINV1 in the potato Cold-induced 

sweetening process, slowing down the buildup of reducing 

sugars ( ). The genes (INVINH1 and SlVPE5) 

which prevent the soluble sugar accumulation in tomatoes 

were knocked out (Wang et al, 2021) using CRISPR/Cas9 

technology which results in enhanced tomato sweetness and 

can be used for tomato sauce production. SLORRM4 mutants 

were created using CRISPR/Cas9 gene editing technology 

which facilitates delay in fruit ripening (Yang et al, 2017). Early 

flowering in annual herbaceous species and perennial woody 

plants is induced by overexpression of an apple FT 

(FLOWERING LOCUS T) gene ( ).  

The LCY (lycopene epsilon-cyclase) gene was edited using a 

CRISPR/Cas9-based technique to generate the β-carotene-rich 

Cavendish banana cultivar (cv.) Grand Naine (

). The weak lodging and significant damage caused by 

typhoons and storms are two problems that commercial 

banana types face. To address this issue, CRISPR/Cas9 was 

employed to alter the MaGA20ox2 gene and semi-dwarf 

banana crops were produced ( ). CRISPR/Cas9 

technology using Agrobacterium tumefaciens mediated 

Genome Editing Increases Lycopene content about 5.1 fold in 

Tomato Fruit ( ). 

CONCLUSION

In recent years, crop breeding for trait improvement is 

switching from conventional breeding to genome engineering 

for its precise editing and effectiveness. Apart from this 

precise DNA editing, scientists are using this site-specific 

binding enzyme as a programmable precise tool for error-

prone and highly efficient editing. Each of the key nucleases 

Clasen et al, 2016

Zhang et al, 2013

Tränkner et al, 2010

Kaur et al, 

2020

Shao et al, 2020

Li et al, 2018Fig. 5: TALENs are organized into 3 domains; N-terminal, 

            A-central, C-terminal

Only the 12 and 13 position of amino acid stretch varies 

(Repeat Variable Diresidues) which are playing the main role 

in the recognition of specific nucleotides in the targeted 

sequence. 

Genome editing for Horticultural crop improvement

Horticultural crops contribute significantly to a country's 

economy by increasing rural income. Genome editing of 

Fig. 6: TALENs consist of a single nucleotide which helps for 
higher specificity in targeted sequences compared to 
zinc finger nuclease containing 3 or 4 domains for 
binding.
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